Mitigating Unfairness in Deep Learning

Guest Lecture – CS 594: Responsible Data Science and Algorithmic Fairness

Vishnu Dasu, Ph.D. student in Computer Sciences

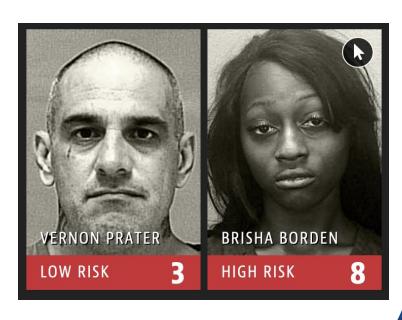
About Me

- Second year PhD student at Penn StateAdvised by Prof. Gary Tan
- 2 years industry experience as a security researcher
- Research Interests: Trustworthy AI, Security & Privacy, Applied Cryptography
- Website: https://vdasu.github.io
- Contact: vdasu@psu.edu

Fairness in ML Applications

Tax Auditing

Amazon Hiring¹

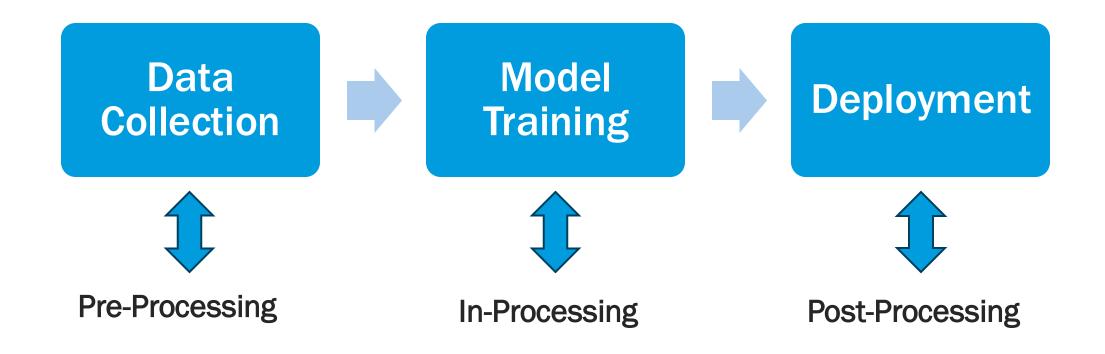


COMPAS²

ML Application Workflow

Data Collection Model Training Deployment

Repairing Unfairness in ML



Repairing Unfairness in ML

- Data collection and training is an expensive and difficult process
- Modifying them is often infeasible
 - Terabytes of data are scraped to train LLMs
 - Cleaning and analyzing the data is impossible
- Can we fix fairness issues after model training is complete?

Repairing Unfairness in ML

- Data collection and training is an expensive and difficult process
- Modifying them is often infeasible
 - Terabytes of data are scraped to train LLMs
 - Cleaning and analyzing the data is impossible
- Can we fix fairness issues after model training is complete?

Overview

- Fairness in Deep Neural Networks (DNNs)
 - NeuFair: Neural Network Fairness Repair with Dropout [ISSTA '24]
- Fairness in Large Language Models (LLMs)
 - Attention Pruning: Automated Fairness Repair of Language Models via Surrogate Simulated Annealing [ICSE '26]

NeuFair: Neural Network Fairness Repair with Dropout

Vishnu Asutosh Dasu, Ashish Kumar, Saeid Tizpaz-Niari, Gang Tan

ISSTA '24

Problem Statement

Can we repair unfairness in a trained DNN without modifying dataset or re-training?

Key Observation and Idea

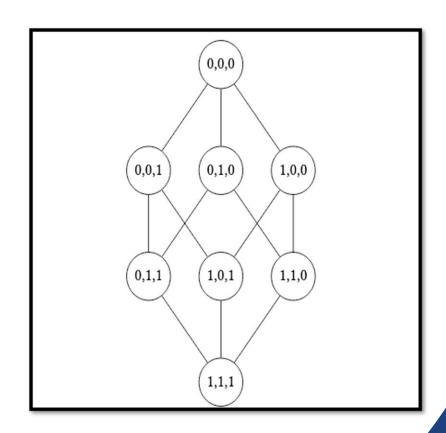
Observation: Subset of neurons disparately affects fairness

Idea: Dropping these neurons after training can improve fairness with negligible loss in utility

Challenges

Exponentially large search space

• DNN with *N* neurons has 2^N possible subsets

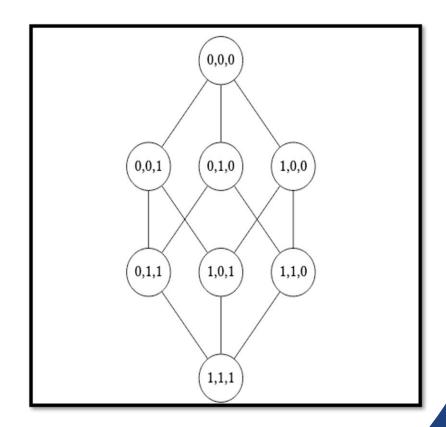


Search space with N = 3

Solution

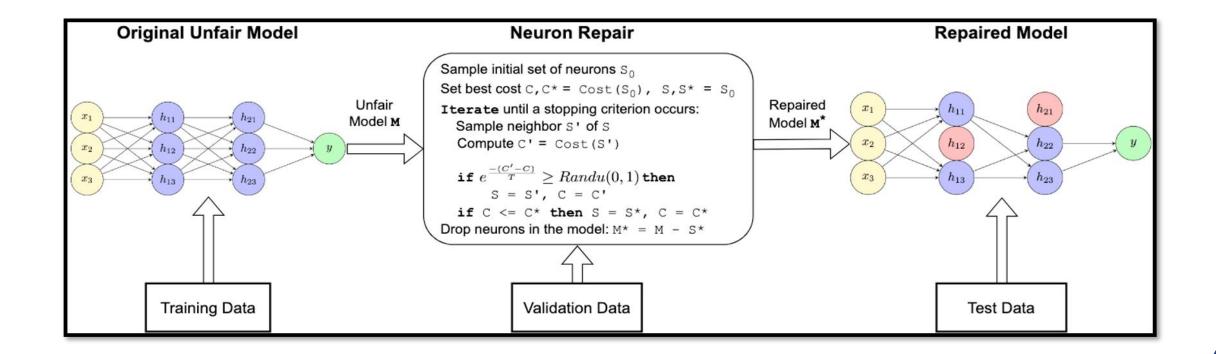
Use randomized algorithms to explore search space

- Two strategies:
 - Simulated Annealing (SA)
 - o Random Walk (RW)



Search space with N = 3

Overview of NeuFair



Fairness and Utility Definitions

• Fairness:

 Equalized Odds Difference (EOD) is maximum of difference between true and false positive rates across protected groups

$$EOD := \max(|TPR_A - TPR_B|, |FPR_A - FPR_B|)$$

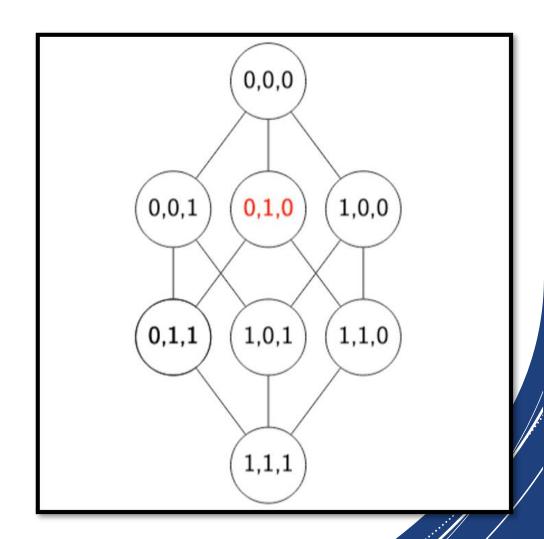
Model Utility:

F1 Score and Accuracy

$$Acc = rac{TP + TN}{TP + TN + FP + FN}$$
 $F1 = rac{2 * TP}{2 * TP + FP + FN}$

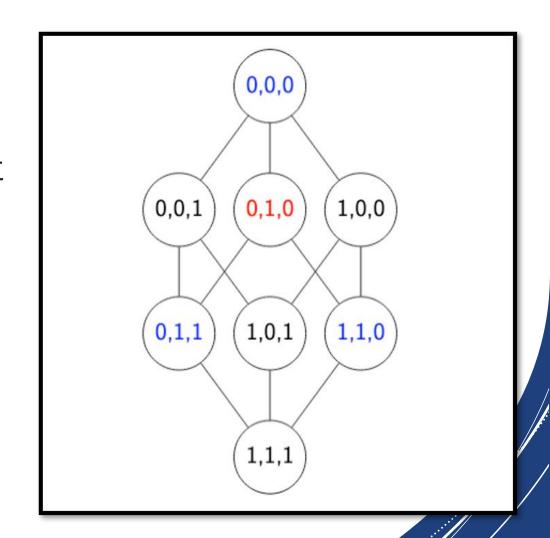
Methodology

1. Compute cost of current state



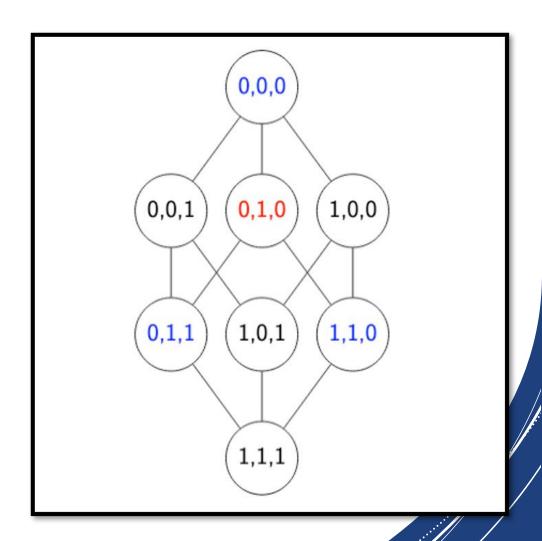
Methodology

- 1. Compute cost of current state
- 2. Sample neighbor and compute cost



Methodology

- 1. Compute cost of current state
- 2. Sample neighbor and compute cost
- 3. If new cost is better, accept state. Else, accept with some probability



Cost Function

Minimize EOD and maintain F1 score

- 1. Compute cost of current state
- Sample a neighbor state and compute cost
- 3. If new cost is better, accept state. Else, accept with some probability

Cost Function

- Minimize EOD and maintain F1 score
- Linear combination of EOD and penalty for poor F1

$$cost(s) := EOD_s + p \cdot EOD_{s_0} \cdot \mathbb{1}(F1_s < tF1_{s_0})$$

- Fair states are encouraged
- States with low F1 are penalized

- 1. Compute cost of current state
- 2. Sample a neighbor state and compute cost
- 3. If new cost is better, accept state. Else, accept with some probability

Neighbors of a State

- State stores a subset of neurons that need to dropped
- Neighbors of a state are all states that add or remove a neuron to its subset
- Hamming Difference is 1
- Pick random neighbor

- 1. Compute cost of current state
- 2. Sample a neighbor state and compute cost
- 3. If new cost is better, accept state. Else, accept with some probability

Acceptance Criteria

- Always accept good states
- For bad states, two strategies:
 - oSimulated Annealing (SA): Accept with probability $p = e^{-(\Delta \cos t/\text{temperature})}$
 - \circ Random Walk (RW): Always accept state i.e. probability p = 1
- SA balances exploration/exploitation
- RW always explores

- 1. Compute cost of current state
- 2. Sample a neighbor state and compute cost
- 3. If new cost is better, accept state. Else, accept with some probability

NeuFair

Repeat Until Time Limit **Algorithm 2:** NeuFair to mitigate unfairness in trained neural networks

Input: Unfair neural network \mathcal{M} , Penalty multiplier p, Threshold multiplier t, Minimum and maximum number of neurons to drop $[n_l, n_u]$, Algorithm Type alg_type , Time Limit $time_limit$

Output: Repaired neural network \mathcal{M}_{\star} , Desirable state s_{\star} , Best cost $cost_{\star}$

```
1 s \leftarrow \text{random\_state}(\mathcal{M}, n_l, n_u)

2 s_{\star}, start\_time \leftarrow \phi, curr\_time()

3 cost \leftarrow \text{compute\_cost}(\mathcal{M}, s, p, t)

4 cost_{\star} \leftarrow \text{compute\_cost}(\mathcal{M}, s_{\star}, p, t)

5 T_0 \leftarrow \text{estimate\_temperature}(\mathcal{M}, s)

6 while curr\_time() = start\_time \leq time\_limit\_do
```

6 while $curr_time() - start_time ≤ time_limit$ do 7 | $T \leftarrow update_temperature(T_0, curr_time())$

```
s_{i} \leftarrow \text{generate\_state}(s, n_{l}, n_{u})
cost_{i} \leftarrow \text{compute\_cost}(\mathcal{M}, s_{i}, p, t)
\Delta E \leftarrow cost_{i} - cost
1 \quad \text{if } \Delta E \leq 0 \text{ then}
2 \quad | cost \leftarrow cost_{i}|
s \leftarrow s_{i}
4 \quad \text{else if } (alg\_type == \text{RW}) \lor (alg\_type == \text{SA} \land e^{-\Delta E/T} \geq Uniform(0,1)) \text{ then}
| cost \leftarrow cost_{i}|
s \leftarrow s_{i}
7 \quad \text{if } cost \leq cost_{\star} \text{ then}
| cost_{\star} \leftarrow cost_{i}|
s_{\star} \leftarrow s_{i}
20 \quad \mathcal{M}_{+} \leftarrow \mathcal{M} \setminus s_{+}
```

21 return M_⋆, s_⋆, cost_⋆



Transition to new state

Experiments and Results

- RQ1: How effective are randomized algorithms in repairing unfairness?
- RQ2: Can dropout improve fairness and utility together?
- RQ3: What are the design considerations of search algorithms?
- RQ4: How does NeuFair perform against SOTA post-processing algorithms?

Experiments and Results

- Seven settings with five different datasets
- Repeat with 10 random seeds each, 1 hr timeout
- Penalty multiplier = 3.0
- F1 threshold = 0.98

$$C(s) = EOD_s + 3.0 \cdot EOD_{s_0} \cdot 1(F1_s < (0.98 \cdot F1_{s_0}))$$

- Restricted search space:
 - ☐ Min. 2 neurons
 - Max. 20-40% of DNN
- 60%-20%-20% Train-Validation-Test split

RQ1: Effective of randomized algorithms

Datasets	Original Model			Simulated Annealing		
Datasets	EOD	F1	Accuracy	EOD	F1	Accuracy
Adult (Sex)	$11.639\% \pm 2.326$	0.667 ± 0.008	$667 \pm 0.008 0.851 \pm 0.003$	$7.259\% \pm 1.697$	$\textbf{0.652} \pm \textbf{0.01}$	0.849 ± 0.004
Adult (Race)	$8.251\% \pm 3.195$	0.007 ± 0.008		$4.976\% \pm 1.816$	$\textbf{0.656} \pm \textbf{0.008}$	0.849 ± 0.004
COMPAS (Sex)	$2.522\% \pm 0.817$	0.967 ± 0.004	0.969 ± 0.004	$2.921\% \pm 1.446$	$\textbf{0.954} \pm \textbf{0.08}$	0.957 ± 0.008
COMPAS (Race)	$2.96\% \pm 1.088$	0.907 ± 0.004		$2.239\% \pm 1.003$	0.954 ± 0.005	0.957 ± 0.004
Bank	$14.665\% \pm 2.114$	$\textbf{0.553} \pm \textbf{0.004}$	$\textbf{0.84} \pm \textbf{0.003}$	$7.257\% \pm 3.533$	$\textbf{0.537} \pm \textbf{0.014}$	$\textbf{0.888} \pm \textbf{0.01}$
Default	$8.962\% \pm 1.772$	$\textbf{0.53} \pm \textbf{0.006}$	0.769 ± 0.007	$2.749\% \pm 0.827$	$\textbf{0.519} \pm \textbf{0.006}$	$\textbf{0.79} \pm \textbf{0.015}$
MEPS16	$20.641\% \pm 2.527$	$\textbf{0.533} \pm \textbf{0.01}$	0.788 ± 0.009	$8.426\% \pm 2.311$	$\textbf{0.507} \pm \textbf{0.02}$	$\textbf{0.853} \pm \textbf{0.005}$

Simulated Annealing on Test split

RQ1: Effective of randomized algorithms

Datasets	Original Model			Random Walk		
	EOD	F1	Accuracy	EOD	F1	Accuracy
Adult (Sex)	$11.639\% \pm 2.326$	0.667 ± 0.008	0.851 ± 0.003	$7.358\% \pm 1.063$	$\textbf{0.652} \pm \textbf{0.01}$	0.849 ± 0.004
Adult (Race)	$8.251\% \pm 3.195$	0.007 ± 0.008		$4.785\% \pm 2.085$	0.658 ± 0.009	0.849 ± 0.003
COMPAS (Sex)	$2.522\% \pm 0.817$	0.967 ± 0.004	0.969 ± 0.004	$2.233\% \pm 1.022$	0.954 ± 0.007	0.957 ± 0.006
COMPAS (Race)	2.96%1.088	0.907 ± 0.004		$2.159\% \pm 1.07$	0.955 ± 0.004	0.958 ± 0.004
Bank	$14.665\% \pm 2.114$	0.553 ± 0.004	$\textbf{0.84} \pm \textbf{0.003}$	$7.595\% \pm 2.733$	$\textbf{0.548} \pm \textbf{0.008}$	$\textbf{0.881} \pm \textbf{0.008}$
Default	$8.962\% \pm 1.772$	0.53 ± 0.006	0.769 ± 0.007	$3.124\% \pm 0.937$	$\textbf{0.523} \pm \textbf{0.005}$	0.79 ± 0.015
MEPS16	$20.641\% \pm 2.527$	$\textbf{0.533} \pm \textbf{0.01}$	0.788 ± 0.009	$9.86\% \pm 2.623$	$\textbf{0.513} \pm \textbf{0.018}$	0.851 ± 0.007

Random Walk on Test split

RQ2: Improve Fairness and Utility together

Datasets	Original Model			Simulated Annealing			
	EOD	F1	Accuracy	EOD	F1	Accuracy	
Adult (Sex)	$11.639\% \pm 2.326$	$0.667 \pm 0.008 0.851 \pm 0$	667 + 0.009 0.951 + 0.003	$7.259\% \pm 1.697$	$\textbf{0.652} \pm \textbf{0.01}$	0.849 ± 0.004	
Adult (Race)	$8.251\% \pm 3.195$		0.031 ± 0.003	$4.976\% \pm 1.816$	$\textbf{0.656} \pm \textbf{0.008}$	0.849 ± 0.004	
COMPAS (Sex)	$2.522\% \pm 0.817$	0.067 _ 0.004	$0.967 \pm 0.004 0.969 \pm 0.004$	0.969 ± 0.004	$2.921\% \pm 1.446$	$\textbf{0.954} \pm \textbf{0.08}$	0.957 ± 0.008
COMPAS (Race)	$2.96\% \pm 1.088$	0.907 ± 0.004	0.909 ± 0.004	$2.239\% \pm 1.003$	0.954 ± 0.005	0.957 ± 0.004	
Bank	$14.665\% \pm 2.114$	$\textbf{0.553} \pm \textbf{0.004}$	0.84 ± 0.003	$7.257\% \pm 3.533$	$\textbf{0.537} \pm \textbf{0.014}$	0.888 ± 0.01	
Default	$8.962\% \pm 1.772$	$\textbf{0.53} \pm \textbf{0.006}$	0.769 ± 0.007	$2.749\% \pm 0.827$	$\textbf{0.519} \pm \textbf{0.006}$	0.79 ± 0.015	
MEPS16	$20.641\% \pm 2.527$	$\textbf{0.533} \pm \textbf{0.01}$	0.788 ± 0.009	$8.426\% \pm 2.311$	0.507 ± 0.02	0.853 ± 0.005	

Simulated Annealing on Test split

RQ2: Improve Fairness and Utility together

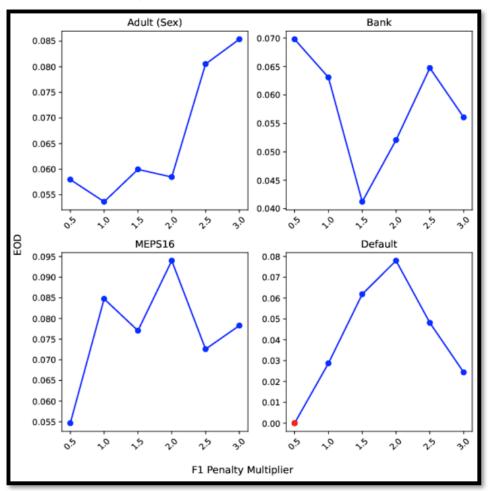
Datasets	Original Model			Random Walk		
	EOD	F1	Accuracy	EOD	F1	Accuracy
Adult (Sex)	$11.639\% \pm 2.326$	0.667 ± 0.008	0.851 ± 0.003	$7.358\% \pm 1.063$	$\textbf{0.652} \pm \textbf{0.01}$	0.849 ± 0.004
Adult (Race)	$8.251\% \pm 3.195$	0.007 ± 0.008	0.031 ± 0.003	$4.785\% \pm 2.085$	0.658 ± 0.009	0.849 ± 0.003
COMPAS (Sex)	$2.522\% \pm 0.817$	0.967 ± 0.004	0.969 ± 0.004	$2.233\% \pm 1.022$	0.954 ± 0.007	0.957 ± 0.006
COMPAS (Race)	2.96%1.088	0.907 ± 0.004	0.909 ± 0.004	$2.159\% \pm 1.07$	0.955 ± 0.004	0.958 ± 0.004
Bank	$14.665\% \pm 2.114$	$\textbf{0.553} \pm \textbf{0.004}$	0.84 ± 0.003	$7.595\% \pm 2.733$	$\textbf{0.548} \pm \textbf{0.008}$	0.881 ± 0.008
Default	$8.962\% \pm 1.772$	$\textbf{0.53} \pm \textbf{0.006}$	0.769 ± 0.007	$3.124\% \pm 0.937$	0.523 ± 0.005	0.79 ± 0.015
MEPS16	$20.641\% \pm 2.527$	$\textbf{0.533} \pm \textbf{0.01}$	0.788 ± 0.009	$9.86\% \pm 2.623$	0.513 ± 0.018	0.851 ± 0.007

Random Walk on Test split

RQ3: Design Considerations of Search Algorithms

- Increasing F1 threshold multiplier may decrease fairness
- Increasing search space (min/max no: of neurons) and may increase fairness
- Increasing time out may increase fairness
- F1 penalty multiplier has non-trivial effect

RQ3: Design Considerations of Search Algorithms



$$\mathsf{cost}(s) := {\color{red} EOD_s} + p \cdot {\color{red} EOD_{s_0}} \cdot \mathbb{1}({\color{blue} F1_s} < {\color{blue} tF1_{s_0}})$$

SA acceptance probability $p = e^{-(\Delta cost/temperature)}$

RQ4: Comparison to SOTA post-processing algorithms

Datasets	EOD					
Datasets	Original	DICE	NeuFair (SA)			
Adult (Sex)	$11.639\% \pm 2.326$	$10.453\% \pm 2.266$	$7.259\% \pm 1.697$			
Adult (Race)	$8.251\% \pm 2.236$	$8.092\% \pm 3.253$	$4.976\% \pm 1.816$			
COMPAS (Sex)	$2.522\% \pm 0.817$	$3.229\% \pm 0.774$	$2.921\% \pm 1.446$			
COMPAS (Race)	$2.96\% \pm 1.088$	$2.964\% \pm 1.088$	$2.239\% \pm 1.003$			
Bank	$14.665\% \pm 2.114$	$12.205\% \pm 2.731$	$7.257\% \pm 3.533$			
Default	$8.962\% \pm 1.772$	$5.845\% \pm 1.816$	$2.749\% \pm 0.827$			
MEPS16	$20.641\% \pm 2.527$	$19.204\% \pm 2.592$	$8.426\% \pm 2.311$			

NeuFair compared to DICE (ICSE 23')

Conclusion

- A subset of neurons disparately affects fairness
- Deterministic dropout after training can improve fairness without loss in utility
- Randomized algorithms are effective for neuron dropout

Attention Pruning: Automated Fairness Repair of Language Models via Surrogate Simulated Annealing

Vishnu Asutosh Dasu, Md Rafi Rashid, Vipul Gupta, Saeid Tizpaz-Niari, Gang Tan

ICSE '26

Problem Statement

Can we extend the idea of NeuFair to repair fairness in pre-trained LLMs?

Challenges

- 1. Size: LLMs contain billions of parameters
 - NeuFair experiments with small DNNs with 100s of neurons
- 2. <u>Time</u>: LLMs have high-inference time
 - Exploring each state takes several minutes
 - SA needs to explore 1000s of states in the exponential search space

Fairness Definition

- Bias HolisticBias dataset:
 - A collection of prompts
 belonging to different groups
 G (e.g. race, gender, sex, etc.)
 - Each group G contains subgroups g (gender: man, woman, transgender, etc.)
 - Bias is measured as differences in model behavior (e.g., toxicity) across subgroups within the same group

$$\operatorname{bias}_{\Theta}(G) = \sum_{g \in G} \left| T_G - T_g \right|$$

where
$$T_g = \frac{1}{|D_g|} \sum_{x \in D_g} tox_{\Theta}(x)$$

and
$$T_G = \frac{1}{|G|} \sum_{g \in G} T_g$$

Utility Definition

- Perplexity (PPL) measures how well a model Θ predicts a sequence y
- It is defined as the exponential of the average negative log-likelihood the model assigns to each token
- We use the WikiText-2 dataset to measure perplexity

$$PPL_{\Theta}(\mathbf{y}) = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\log(\Theta(y_i|y_1,\ldots,y_{i-1}))\right)$$

Dealing with the Size of LLMs

Attention in LLMs

 Scaled dot-product attention (SDPA) operates on Query, Key, and Value vectors

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

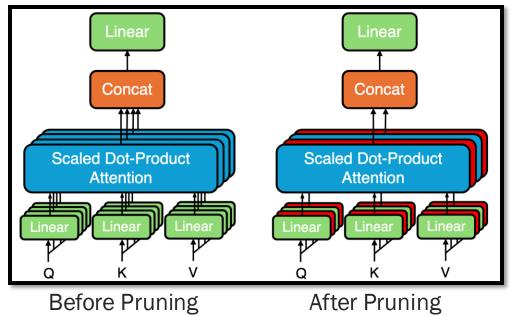
 Transformer-based LLMs consist of stacked blocks of Multi Head Attention (MHA) in each block

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_n)W^{O}$$

$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

Pruning Attention Heads

- Several works have shown that LLMs are over-parameterized
- Pruning a subset of head of attention heads can improve efficiency with minimal loss in performance



Pruning Attention Heads

- Can we prune attention heads to improve fairness?
 - Less granular than infeasible neuron-level pruning and faster

Pruning Attention Heads

- Can we prune attention heads to improve fairness?
 - ☐ Less granular than infeasible neuron-level pruning and faster

■ FASP Algorithm: Fairness-Aware Structured Pruning in Transformers [Zayed et. al, AAAI 2024]¹

1. Prune each attention head one at a time while keeping others intact

- 1. Prune each attention head one at a time while keeping others intact
- 2. Calculate the change in fairness and utility after pruning

- Prune each attention head one at a time while keeping others intact
- 2. Calculate the change in fairness and utility after pruning
- 3. Rank attention heads by magnitude of change

- Prune each attention head one at a time while keeping others intact
- 2. Calculate the change in fairness and utility after pruning
- 3. Rank attention heads by magnitude of change
- 4. Define critical heads: Heads that are important for utility

- Prune each attention head one at a time while keeping others intact
- 2. Calculate the change in fairness and utility after pruning
- 3. Rank attention heads by magnitude of change
- 4. Define critical heads: Heads that are important for utility
- 5. Prune a subset of *non-critical* heads that improve fairness the most

The FASP algorithm: Issues

- Effect of pruning attention heads is non-linear!
 - Heads interact through residual connections and layer norms
- E.g. If pruning the 1st and 3rd individually improves fairness, pruning them together may not

The FASP algorithm: Issues

- Effect of pruning attention heads is non-linear!
 - Heads interact through residual connections and layer norms
- E.g. If pruning the 1st and 3rd individually improves fairness, pruning them together may not
- **Solution:** Use Simulated Annealing to consider *all* possible subsets of attention heads!

Dealing with the Inference Time of LLMs

Efficiency of Simulated Annealing (SA) with LLMs

- SA for pruning attention heads solves the non-linearity problem
- However, SA needs to explore thousands of subsets of attention heads and inferring the fairness/utility of each state takes several minutes
- E.g. One round of inference on LLama-2-7B takes 13 minutes on RTX A6000
- How do we scale?

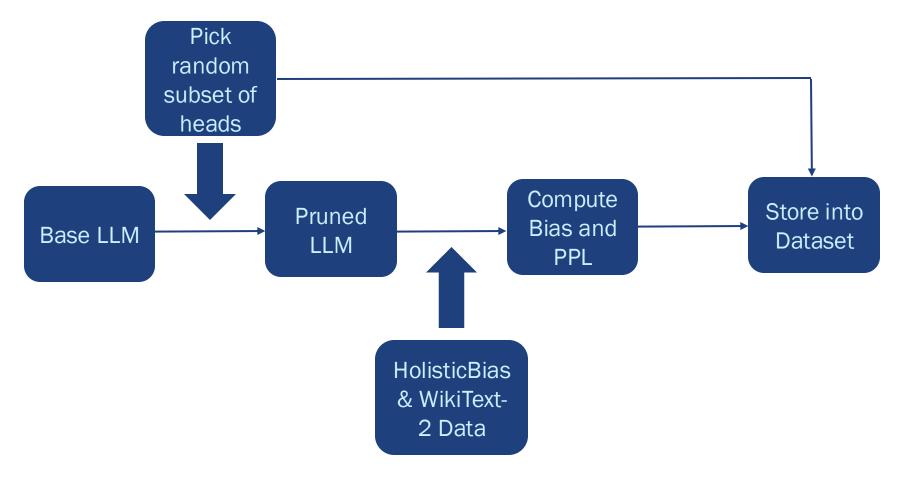
Approximating Fairness/Utility

• Instead of computing the real fairness/utility of every state, can we approximate it?

Approximating Fairness/Utility

- Instead of computing the real fairness/utility of every state, can we approximate it?
- Solution: Train DNNs to predict what the fairness/utility after pruning a subset of attention heads would be

Surrogate DNN Training: Dataset Creation



Examples from Dataset

Model	Attention Head Configuration	Bias	Perplexity
Llama-2-7B	0, 1, 0, 0, 0, , 0, 0, 0, 0, 0	0.295	20.75
	1, 0, 0, 0, 0, , 0, 0, 1, 0, 0	0.323	8.0
GPT-J-6B	1, 1, 0, 0, 0, , 1, 0, 1, 0, 1	0.487	15.461
	0, 0, 1, 0, 0, , 0, 1, 0, 0, 1	0.428	13.383

Surrogate DNN training

- Train two DNNs, θ_{bias} and θ_{PPL} , to predict the bias and perplexity
- The input to the DNN is a bitvector representing a subset of attention heads
- DNNs are trained for regression using MSE loss

Algorithm 1: Training surrogate DNNs to capture the effect of pruning attention heads on the bias and perplexity.

Input: Language Model Θ , Prompts for bias $\mathcal{D}_{\text{bias}}$, Text data for perplexity \mathcal{D}_{ppl} , Min. and max. number of attention heads to drop $[n_l, n_u]$, Fraction of dataset to use for bias and perplexity $[\eta_{bias}, \eta_{ppl}]$, and Time Limit $time_limit$.

Output: Trained DNNs θ_{bias} and θ_{ppl} that predict the bias and perplexity of Θ after dropping attention heads.

```
1 \mathcal{B}, \mathcal{P} \leftarrow \emptyset, \emptyset

2 while curr\_time() - start\_time \le time\_limit do

3 | s \leftarrow \text{random\_heads}(\Theta, n_l, n_u)

4 | \Theta' \leftarrow \text{prune\_heads}(\Theta, s)

5 | S_{bias} \subseteq \mathcal{D}_{bias} such that |S_{bias}| = \eta_{bias}|\mathcal{D}_{bias}|

6 | S_{ppl} \subseteq \mathcal{D}_{ppl} such that |S_{ppl}| = \eta_{ppl}|\mathcal{D}_{ppl}|

7 | bias \leftarrow \text{compute\_bias}(\Theta'(S_{bias}))

8 | ppl \leftarrow \text{compute\_ppl}(\Theta'(S_{ppl}))

9 | \mathcal{B} = \mathcal{B} \cup \{(s, bias)\}

10 | \mathcal{P} = \mathcal{P} \cup \{(s, ppl)\}

11 | \theta_{bias} = \arg\min_{\theta} \frac{1}{|\mathcal{B}|} \sum_{(s,y) \in \mathcal{B}} ||\theta(s) - y||^2

12 | \theta_{ppl} = \arg\min_{\theta} \frac{1}{|\mathcal{P}|} \sum_{(s,y) \in \mathcal{P}} ||\theta(s) - y||^2
```


Surrogate Simulated Annealing

- Problem is now reduced to finding best input to both DNNs
- Significantly scales up SA with LLMs
 - oE.g. 2,260,000x speed-up for LLama-2-7b

Cost Function

- Cost function of SA is weighted combination of bias and PPL DNN
- E controls the bias vs. perplexity trade off
 - Higher epsilon trades of better bias for worse perplexity

$$cost(s) := \epsilon \cdot \theta_{bias}(s) + (1 - \epsilon) \cdot \theta_{PPL}(s)$$

Attention Pruning Algorithm

Algorithm 2: AP: Surrogate Simulated Annealing for Fairness-Aware Attention Head Pruning.

Input: Unfair LLM Θ , DNNs to predict bias and perplexity $[\theta_{bias}, \theta_{ppl}]$, min. and max. number of attention heads to drop $[n_l, n_u]$, and Timeout $time_limit$ **Output:** Repaired LLM Θ_{\star} , Ideal state s_{\star} , Best cost $cost_{\star}$

```
1 \text{ s} \leftarrow \text{random\_state}(\Theta, n_l, n_u)
 s_{\star}, start_time \leftarrow [0, 0, \dots, 0, 0], curr_time()
 s cost \leftarrow \theta_{bias}(s) + \theta_{ppl}(s)
 4 cost_{\star} \leftarrow \theta_{bias}(s_{\star}) + \theta_{ppl}(s_{\star})
T_0 \leftarrow \text{estimate\_temperature}(\theta_{bias}, \theta_{ppl}, s)
    while curr time() – start time \leq time limit do
          T \leftarrow \text{update\_temperature}(T_0, curr\_time())
          s_i \leftarrow \text{generate\_state}(s, n_l, n_u)
          cost_i \leftarrow \theta_{bias}(s_i) + \theta_{ppl}(s_i)
          \Delta E \leftarrow cost_i - cost
          if \Delta E \leq 0 then
                 cost \leftarrow cost_i
              s \leftarrow s_i
          else if e^{-\Delta E/T} \ge Uniform(0,1) then
                 cost \leftarrow cost_i
                s \leftarrow s_i
          if cost \le cost_{+} then
                 cost_{\star} \leftarrow cost_{i}
                s_{\star} \leftarrow s_i
\Theta_{\star} \leftarrow \text{prune\_heads}(\Theta, s_{\star})
```

21 **return** Θ_{\star} , s_{\star} , $cost_{\star}$

Compute cost using DNNs

Transition to new state

Repeat

Until

Time Limit

Experiments and Results

- RQ1: How effective are surrogate DNNs at predicting bias/perplexity?
- RQ2: How does Attention Pruning compare to SOTA?
- RQ3: What are the design considerations of Attention Pruning?
- RQ4: Can Attention Pruning generalize beyond Gender bias?

Experiments and Results

- Six different LLMs evaluated against Gender bias from HolisticBias
- Repeat with 3 different seeds
- Standard pre-processing to scale down bias/PPL in [0,1]
- Time limit of 3hrs

RQ1: Effectiveness of Surrogate DNNs

Model	θ_{bias} MSE	θ_{ppl} MSE		
Distilgpt-2	0.0038	0.0005		
GPT-2	0.004	0.004		
GPT-Neo-125M	0.007	0.007		
GPT-Neo-1.3B	0.0049	0.026		
GPT-J-6B	0.0073	0.0048		
Llama-2-7B	0.0046	0.010		

MSE of Trained Surrogate DNNs

RQ1: Effectiveness of Surrogate DNNs

Model	$cost = \theta_{bias}(s)$		$cost = \theta_{ppl}(s)$		$cost = \epsilon \cdot \theta_{bias}(s) + (1 - \epsilon) \cdot \theta_{ppl}(s)$		
	Bias	PPL	Bias	PPL	Bias	PPL	
Distilgpt-2	0.275	211.61	0.415	65.28	0.285	74.981	
GPT-2	0.245	80.694	0.415	43.533	0.233	52.071	
GPT-Neo 125M	0.196	20226574.0	0.35	39.377	0.236	41.912	
GPT-Neo 1.3B	0.249	21.7	0.42	18.323	0.282	18.5	
GPT-J 6B	0.276	14.492	0.38	12.258	0.275	13.17	
Llama-2 7B	0.37	7.5	0.405	6.688	0.317	7.219	

Effect of using only one surrogate DNN with SA

RQ2: Comparison against state-of-the-art

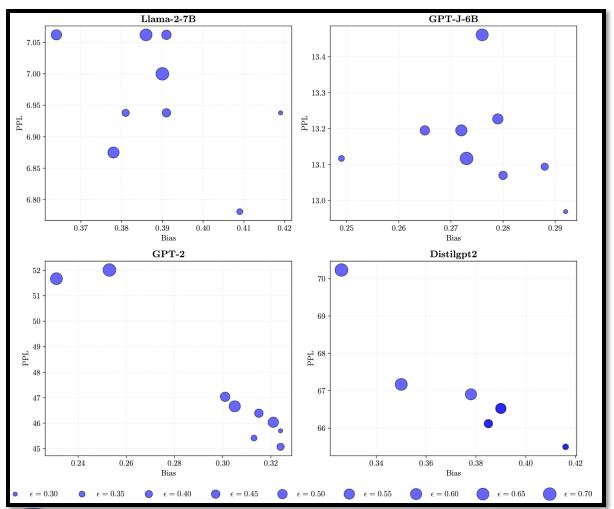
Model	Baseline		$\mathbf{AP}\ (\epsilon=0.5)$		FASP [72] ($\gamma = 0.3$)		
Middel	Bias	PPL	Bias PP		Bias	PPL	
Distilgpt-2	0.428 ± 0.028	65.325	$\mathbf{0.288 \pm 0.002} \ (\epsilon = 0.88, \eta = 0.2)$	74.891	$0.31 \pm 0.013 \ (\alpha = 0.2)$	78.212	
GPT-2	0.402 ± 0.01	43.588	$0.255 \pm 0.02 \ (\epsilon = 0.8, \eta = 0.2)$	52.071	$0.27 \pm 0.018 \ (\alpha = 0.2)$	58.125	
GPT-Neo-125M	0.399 ± 0.008	35.628	$0.241 \pm 0.004 (\eta = 0.1)$	41.912	$0.221 \pm 0.004 (\alpha = 0.1)$	47.237	
GPT-Neo-1.3B	0.435 ± 0.001	17.422	$0.285 \pm 0.003 \; (\eta = 0.05)$	18.548	$0.339 \pm 0.012 \ (\alpha = 0.16, \gamma = 0.6)$	19.391	
GPT-J-6B	0.446 ± 0.013	11.695	$0.264 \pm 0.01 \ (\eta = 0.1)$	13.17	$0.288 \pm 0.005 \ (\alpha = 0.18)$	13.227	
Llama-2-7B	0.4 ± 0.006	6.781	$0.316 \pm 0.003 \ (\eta = 0.05)$	7.219	$0.342 \pm 0.004 \ (\alpha = 0.06)$	6.781	

Overall, AP finds states with better bias and PPL

RQ3: Design Considerations of Attention Pruning

- AP has several hyperparameters that need to tuned
- Two important ones:
 - E in cost function
 - Running Time

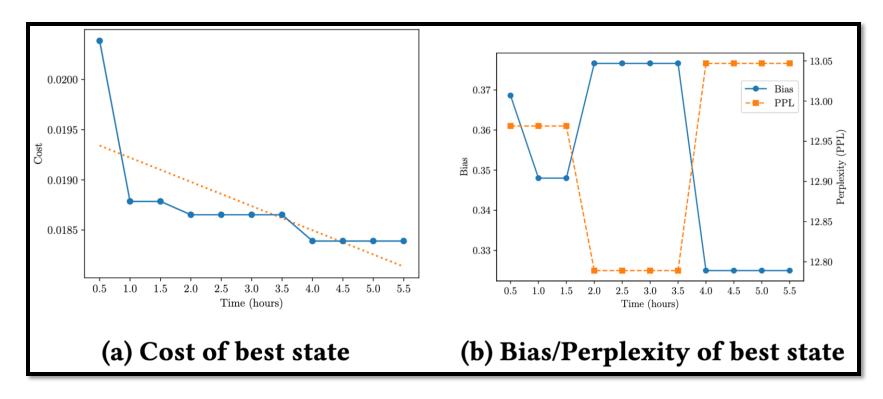
RQ3: Design Considerations of Attention Pruning



$$\mathsf{cost}(s) := \epsilon \cdot \theta_{\mathsf{bias}}(s) + (1 - \epsilon) \cdot \theta_{\mathsf{PPL}}(s)$$

Higher values of E yield better bias at the expense of PPL

RQ3: Design Considerations of Attention Pruning



Effect of running time on cost and bias/PPL

RQ4: Effect of reducing gender bias on other biases

Model	Race		Nationality		Sexual Orientation		Age	
	Baseline	AP	Baseline	AP	Baseline	AP	Baseline	AP
Distilgpt-2	0.529	0.395	0.288	0.225	0.737	0.57	0.054	0.036
GPT-2	0.518	0.357	0.301	0.217	0.632	0.512	0.058	0.025
GPT-Neo-125M	0.448	0.33	0.23	0.163	0.792	0.494	0.044	0.027
GPT-Neo-1.3B	0.463	0.374	0.226	0.201	0.672	0.445	0.078	0.048
GPT-J-6B	0.496	0.369	0.258	0.201	0.614	0.471	0.069	0.024
Llama-2-7B	0.458	0.385	0.252	0.217	0.612	0.49	0.057	0.033

Reducing Gender bias also reduces other biases

Conclusion

- Surrogate DNNs are effective at estimating the effect of pruning attention heads on bias/PPL
- Surrogate Simulated Annealing is effective at considering nonlinear relationships between attention heads

Future Works

- Surrogate DNN idea is very interesting and powerful
 Can we extend to other areas like robustness, privacy, etc.?
- Data collection process to train DNNs is expensive
 - Several hours to collect 1000s of samples
 - Can we find more efficient ways to train surrogate models?
- Using genetic algorithms instead of SA

Thank You!

